A new general method for the generation of (alk-1-ynyl)halocarbenes by base solvolysis of 3-substituted 1,1,1,3-tetrahalopropanes

Konstantin N. Shavrin, Valentin D. Gvozdev and Oleg M. Nefedov*a

^a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow, Russian Federation. Fax: +7 095 135 5328

The (alk-1-ynyl)halocarbenes 4 have been generated from 3-substituted 1,1,1,3-tetrahalopropanes 1 via elimination of three molecules of hydrogen halide by treatment with Bu^tOK or with alkali metal hydroxides under phase-transfer catalysis conditions and have been trapped by alkenes to form 1-(alk-1-ynyl)-1-halocyclopropanes 5 in 40–70% yields.

Previously (alk-1-ynyl)halocarbenes **4** have been generated by base solvolysis of the corresponding 1,1-dihaloalk-2-ynes¹ or by photolysis of 3,3-dimethyl-5-(bromoethynyl)-3*H*-pyrazole.² These carbenes readily add to the double bond of olefins with formation of 1-(alk-1-ynyl)-1-halocyclopropanes **5**.

We have found that upon interaction with Bu^tOK or with alkali metal hydroxides under phase-transfer catalysis conditions, 3-substituted 1,1,1,3-tetrahalopropanes eliminated three molecules of hydrogen halides to give carbenes 4, which were trapped by excess alkene, resulting in the formation of 1-(alk-1-ynyl)-1-halocyclopropanes[†] 5 in up to 70% yield (Scheme 1).

The following experimental results point to the fact that the generation of carbenes 4 proceeds *via* the reaction pathway presented in Scheme 1.

(a) Upon interaction of Bu¹OK with a 1.5–2.5-fold molar excess of 3,3-dichloro-1-phenylpropyne 6 in hexane at 20 °C for 0.5–1.5 h, a mixture of starting dichloride 6 (55–80%) and 1,1-dichloro-3-phenylpropadiene 3a (45–20%) was formed in a ratio depending on the reaction time and amount of Bu¹OK added. On treatment of these mixtures with excess Bu¹OK in the presence of tetramethylethylene, 1-chloro-2,2,3,3-tetramethyl-1-(phenylethynyl)cyclopropane 5a was formed in 55% yield based on both dichlorides. The latter is equal to the yield of cyclopropane 5a from uncombined

For **5a**: 1 H NMR (200 MHz, CDCl₃) δ : 1.28 (s, 6H, 2Me), 1.31 (s, 6H, 2Me), 7.3–7.5 (m, 5H, Ph); 13 C NMR (50.3 MHz, CDCl₃) δ : 18.8 (2Me), 19.7 (2Me), 30.2 (2 2 CMe₂), 49.7 (CCl), 85.2 and 88.0 (C=C), 123.0 (C-1 in Ph), 128.25, 128.29, 131.8 (Ph); m/z: 232, 234 (M⁺).

For **5b** [cis (H,Cl)/trans (H,Cl) = 1.4]: 1 H NMR (200 MHz, CDCl₃) δ : 1.15–1.5 (m, 10H, 3Me and CH), 7.3–7.55 (m, 5H, Ph); 13 C NMR (50.3 MHz, CDCl₃) δ cis (H,Cl)-**5b**: 10.0 (CH), 17.3, 24.0, 32.1 (3Me), 28.9 (CMe₂), 45.3 (CCl), 82.8, 86.0 (C=C), 122.8 (C-1 in Ph); trans (H,Cl)-**5b**: 9.4 (CH), 16.3, 25.0, 34.4 (3Me), 27.7 (CMe₂), 45.2 (CCl), 86.6, 89.9 (C=C), 122.9 (C-1 in Ph), 128.2, 128.3, 131.7, 131.8 (Ph in both isomers); m/z: 218, 220 (M⁺).

For **5d** [*trans* (Ph,Cl)/*cis* (Ph,Cl) = 3.5]: 1 H NMR (200 MHz, CDCl₃) δ : *trans* (Ph,Cl)-**5d**: 0.81 (t, 3H, J7.5 Hz, CH₃), 1.08–2.0 (m, 6H, 2CH₂ in Buⁿ and CH₂ in cyclo-C₃H₃), 2.1 (t, 2H, J8.5 Hz, CH₂C \equiv), 2.8 (dd, 1H, J 10 Hz, J 8 Hz, CH in cyclo-C₃H₃), 7.3–7.5 (m, 5H, Ph); *cis* (Ph,Cl)-**5d**: 0.98 (t, 3H, J7.5 Hz, CH₃), 1.08–2.0 (m, 6H, 2CH₂ in Buⁿ and CH₂ in cyclo-C₃H₃), 2.29 (t, 2H, J8.5 Hz, CH₂C \equiv), 2.73 (dd, 1H, J11 Hz, J11 Hz, CH in cyclo-C₃H₃), 7.3–7.5 (m, 5H, Ph); m/z: 232, 234 (M⁺)

For **5e**: ¹H NMR (200 MHz, CDCl₃) δ : 1.21 and 1.22 (2s, 12H, 4Me), 7.3–7.5 (m, 5H, Ph); ¹⁹F NMR (188 MHz, CDCl₃) δ (CCl₃F): –191.9 (s); ¹³C NMR (50 MHz, CDCl₃) δ : 15.5 (d, 2Me, J 8.6 Hz), 19.0 (2Me), 27.7 (d, 2CMe₂, J 11.5 Hz), 80.3 (d, CF, J 215 Hz), 83.5 (d, \equiv CCF, J 32.5 Hz); 89.8 (d, PhC \equiv , J 10.2 Hz), 122.6 (d, C-1 in Ph, J 3 Hz); 128.2, 128.4, 131.6 (Ph); m/z: 216 (M $^+$).

For **5f**: ¹H NMR (200 MHz, CDCl₃) δ : 0.91 (t, 3H, J 7 Hz, CH₃ in Bu); 1.18 (s, 12H, 4Me), 1.2–1.55 (m, 4H, 2CH₂), 2.27 (t, 2H, J 7 Hz, CH₂C \equiv); ¹³C NMR (50.3 MHz, CDCl₃) δ : 13.7 (Me in Bu), 18.7 (CH₂), 18.8 (2CH₃), 19.7 (2CH₃), 22.0 (CH₂), 29.9 and 31.0 (*C*H₂C \equiv and 2C in cyclo-C₃), 50.3 (CCl), 78.4 and 86.1 (C \equiv C); m/z: 212, 214 (M $^+$).

$$RCHZ-CH_{2}-CXY_{2} \xrightarrow{i}_{-HZ} [RCH=CH-CXY_{2}] \xrightarrow{i}_{-HY} [RCH=C=CXY]$$

$$1 \qquad 2 \qquad 3$$

$$\xrightarrow{i}_{-H^{+}} [R\overline{C}=C=CXY] \longrightarrow RC=C\overline{C}XY] \xrightarrow{-Y^{-}} [RC=C\overline{C}X]$$

$$4$$

$$R^{1} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow RC=C$$

$$X \longrightarrow R^{3} R^{1} \longrightarrow R^{4} \longrightarrow RC=C$$

$$X \longrightarrow R^{4} R^{2} \longrightarrow R^{4} \longrightarrow R^{2} \longrightarrow R^{4} \longrightarrow$$

$$\begin{array}{lll} \textbf{5a} & R=Ph,\, R^1=R^2=R^3=R^4=Me,\, X=Cl\\ \textbf{5b} & R=Ph,\, R^1=R^2=R^3=Me,\, R^4=H,\, X=Cl\\ \textbf{5c} & R=Ph,\, R^1=R^3=Me,\, R^2=R^4=H,\, X=Br\\ \textbf{5d} & R=Bu,\, R^1=Ph,\, R^2=R^3=R^4=H,\, X=Cl\\ \textbf{5e} & R=Ph,\, R^1=R^2=R^3=R^4=Me,\, X=F\\ \textbf{5f} & R=Bu,\, R^1=R^2=R^3=R^4=Me,\, X=Cl\\ \end{array}$$

Scheme 1 Reagents and conditions: i, Bu^tOK, hexane, 20 °C or KOH/BTEAC, CH₂Cl₂, 20 °C.

dichloride **6** and is unaffected by the content of halides **6** and **3a** in the mixture. Therefore, the formation of cyclopropane **5a** arises from acetylene **6** as well as from allene **3a**, *i.e.* both of these dihalides are precursors of chloro(phenylethynyl)carbene **4a** (Scheme 2)

(b) The carbene species obtained from 3-bromo-1,1,1-trichloro-3-phenylpropane **1a** and from dihalide **6** exhibit the same selectivity toward pairs of competing olefins (each ca. 10-fold excess) from a standard set of alkenes (2,3-dimethylbut-2-ene, 2-methylbut-2-ene, cis-but-2-ene and

Scheme 2 Reagents and conditions: i, Bu^tOK, hexane, 20 °C.

^b Higher Chemical College, Russian Academy of Sciences, 125820 Moscow, Russian Federation

[†] All new compounds (**5a–b**, **5d–e**) gave the expected NMR and mass spectra and satisfactory elemental analyses. ¹H and ¹³C NMR spectra of cyclopropanes **5c** are identical to those described in the literature. ¹

2-methylpropene as reference). This result points to the fact that carbenes generated from halides $\bf 3a$ and $\bf 6$ are identical in nature.

(c) In the reaction of halide **1a** with triethylamine 3,3,3-trichloro-1-phenylpropene **2a** is obtained.³

PhCHBrCH₂CCl₃
$$\xrightarrow{\text{Et}_3\text{N}}$$
 PhCH=CHCCl₃

2a

It should be noted that the treatment of 1,1,1,3-tetrachloroheptane 1e with Bu^tOK in the presence of tetramethylethylene resulted in a mixture of 1-chloro-1-(hexyn-1-yl)-2,2,3,3-tetramethylcyclopropane 5f and 1-(butylchlorovinylidene)-2,2,3,3-tetramethylcyclopropane ‡ 8 in 50% total yield (ratio 5f:8 = 4:1). The fact that cyclopropane 8 is obtained as a by-product which can be detected suggests that butylchlorovinylidenecarbene 7 along with carbene 4c is generated from tetrachloride 1e. The formation of carbene 7 may be represented by Scheme 3.

Scheme 3 Reagents and conditions: i, Bu^tOK, hexane, 20 °C.

In conclusion, some new general means of access to (alk-1-ynyl)halocarbenes **4**, including previously unknown (alk-1-ynyl)fluorocarbenes, are proposed.

The research described in this publication was made possible in part by grant no. 96-03-32907a from the Russian Foundation of Basic Research.

References

- 1 K. N. Shavrin, I. V. Krylova, I. B. Shvedova, G. P. Okonnishnikova, I. E. Dolgy and O. M. Nefedov, *J. Chem. Soc., Perkin Trans.* 2, 1991, 1875
- (a) M. Franck-Neumann and P. Geoffroy, Tetrahedron Lett., 1983, 1779;
 (b) M. Franck-Neumann, P. Geoffroy and J. J. Lohmann, Tetrahedron Lett., 1983, 1775;
 (c) M. Franck-Neumann, P. Geoffroy, M. Miesch and D. F. Zaragoza, Tetrahedron Lett., 1990, 4121.
- 3 M. S. Kharash, O. Reinmuth and W. H. Urry, *J. Am. Chem. Soc.*, 1947, **69**, 1105.

Received: Moscow, 5th January 1997 Cambridge, 28th January 1997; Com. 7/00341B

[‡] Spectral data for 8: ¹H NMR (200 MHz, CDCl₃) δ : 0.89 (t, 3H, J 7 Hz, CH₃ in Bu), 1.26 (s, 6H, 2Me), 1.29 (s, 6H, 2Me), 1.2–1.55 (m, 4H, 2CH₂), 2.36 (t, 2H, J 7 Hz, CH₂C≡); ¹³C NMR (50.3 MHz, CDCl₃) δ : 13.9 (CH₃ in Bu), 21.0, 21.1, 21.8, 29.3, 29.5, 36.9 (2CMe₂ in cyclo-C₃, 2CH₃, 2CH₃, CH₂−CH₂−CH₂ in Bu), 107.3 and 107.6 (=C in cyclo-C₃ and =CCl), 180.8 (=C=); IR, ν _{max}/cm⁻¹: 2006 (C=C=C); m/z: 212, 214 (M⁺).